この画像を大きなサイズで見るまさかこの学生も、自分の間違った数学のテストの答案用紙(当時は粘土板)が4000年後に後世に晒されるとは思いもよらなかっただろう。
間違いをやらかしたのはバビロニアの学生だった。
現在のイラクにあるキシュ遺跡から発掘された問題の粘土板は、直径およそ8.2cmの小さな円形のもので、現在はオックスフォード大学のアシュモレアン博物館に所蔵されている。
いったい何の問題を間違えたのか?三角形の面積を求める計算だ。
4000年前の粘土板に数学テストの間違った回答
キシュ遺跡からは、古代バビロニアの数学教育の痕跡だとされるおよそ24枚の粘土板が見つかっており、これはそのうちのひとつだ。
古代近東で使われていた楔形(くさびがた)文字が刻まれていて、課題は三角形の面積を計算するよう求めている。
三角形の高さは1.875cm、底辺3.75cmと記されている。
日本では小学校5年生くらいで習うはず。
三角形の面積を求める方程式は、底辺×高さ÷2だ。
なのでこの粘土板の答えは、(1.875×3.75)/2=3.515625となる。
それほど難しい問題ではないが、このバビロアニアの学生は「3.1468」という間違った答えを導き出した。
この画像を大きなサイズで見る当時バビロニアでは60進法が用いられていた
アシュモレアン博物館の研究者たちは、この誤りは中間計算の一部で60進法の桁を間違えたために生じたのではないかと指摘している。
バビロニアの数学は当時、非常に進んでいた。彼らは60進法を採用していたが、その方法は今日でも1分は60秒、1時間は60分という時間の単位として残っている。
驚くべきことにバビロニアの学者たちは、ピタゴラスより1000年以上前に、ピタゴラスの定理を理解していて、直角三角形のふたつの短い辺の2乗の和が斜辺の2乗に等しいことをわかっていた。
この画像を大きなサイズで見る古代バビロニア人の学生が数学で取り組んでいた問題は簡単なものだけではではなかった。その一例が、「1ロッドあたりのリード」の問題である。
ロッドは「ロッド」は長さの単位で、約5mに相当する。リードは約2.7mに相当する短い長さの単位で植物の「葦(あし)」に由来すると考えられている。
この画像を大きなサイズで見るこの問題では、傾斜が徐々に減少する畑の長さと面積を計算する必要がある。
設定として、畑の幅は1ロッド(約5m)で、傾斜、または「畝(うね)」は1単位長ごとに0.06ロッドずつ減少する。これにより、畑の幅が少しずつ狭くなっていく形になる。
解法は以下の通りである。まず、1ロッドに含まれるリード(約2.7m)がいくつあるかを計算する。
次に、各畝がどの程度短くなるかを求め、最終的に畑全体の長さを算出する。
最後に、計算した長さに幅の半分を掛けることで、畑の面積を求める。つまり、面積は「幅×長さ÷2」で導き出される。
口頭から文書へ、この粘土板が興味深い理由
なぜ、この粘土板が興味深いのか?
粘土板の耐久性のおかげで、これら古代の記録が今日まで残り、初期の人類の文明について重要な知識をもたらしてくれる。
当の学生にとっては4000年後に恥をさらされることになるとは思ってもみなかっただろうが、この粘土板には歴史的な重要性がある。
古代バビロニア人が知識の伝達を口頭から文書へと移行したことを示しているのだ。
この移行は紀元前3500年頃、キシュで始まった。文書化への移行によって、知識の保存と普及が可能になり、将来の教育システムの基礎が築かれたといえる。
さらに、こうした計算ミスが古代の学生の人間らしさを感じさせる。
現代の私たちも学校で間違えることは多々ある。こうした試行錯誤を繰り返す学習プロセスが、人間の知能の発達において、太古の昔も現在も変わらない側面であることを思い出させてくれる。
これは現代社会と古代社会を直接結びつけるもので、いつの時代も変わらないことのひとつだ。私たちは皆、数学を習得するのに苦労してきたのだ。
バビロニア人がこうした教育システムで解決しようとしていた問題は、単純なものではなく、順を追って複数の計算を組み合わせて解いていくものだった。
キシュで発見された4000年前のこの粘土板は古代の学生の数学の間違いを明らかにしただけでなく、当時の教育システム、数学の進歩、文化の発展を垣間見ることができる。
これは学習の普遍性や知識を取り入れようとする人類共通の欲求を感じさせてくれる重要なものだ。数千年も隔たった古代世界と現代世界の架け橋といえよう。
References: This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today














間違えた人がやめてくれーとあの世から飛び出てくるぞ
もう10回位生まれ変わってフィールズ賞取ってるかも
間違った答えが偶然にも円周率の出だしの3.14っていうのが増々興味深い
「四千年も経ってから恥かかされるとは思わなかったよ」
とうとう出たね。。。
自分のテストはすべて処分しなきゃ
1万年後の世代に発掘されてしまうかもしれない
残しておけばこの記事やメレルの日誌みたいに古代文明の貴重な資料になるかも
小学生時代のテストなら君のお母さんあたりがあ保存してるんじゃない
4000年前だとまだ0がない時代でくさび形文字の表記では桁を間違いやすかったという話なので計算を間違えるのも無理はない。
皇暦だと2700年ぐらいだっけ?
日本の神話初期より1300年前のテストの間違い粘土板w
人類は発展停滞滅亡繰り返してたんだなと感じる
この人たちが60進数だったおかげで、未だに時間とかも60分だったりするのよね。。。進んでいたのはそうなんだけど、なんで10進数にしてくれなかったんだろうw
4で割り切れるとかなり便利
フランス革命のときに時間を10進に切り替えたことがあるけどダメだったらしいね
60 進法の計算……全くできる気がしないです。 だから私はさらされてもノーダメージですw
バビロニアの野比のび太か
課題提出のために陶芸までしなければならないなんて、当時の学生は大変だな
勉学等に使う粘土板は自身で用意するものと教育機関で用意するものがあるんじゃない、粘土板なので水でふやかして塗りつぶしとかできたろうし
文字通りの板状の粘土なだけで陶芸技術はいらんて
別に焼いてあるわけではなく、乾燥しきってるだけやし
そうなんだ
じゃあ逆に「宿題はやってきたんですけど、登校中に落っことして割れました」みたいなことがありそう
その場合、やって来てない判定されるだけ
乾かしてる最中に踏まれたとか上に荷物落として潰れたとかありそう
三内丸山遺跡の出土品の展示で 失敗した土器のコーナーがあったなあ まさか未来に晒されるとは だ。
10進法でも間違えるのに60進法で計算とか無理だ。
ところでこの粘土板は自分の記述用ノートだったのか? 宿題提出だったら間違いとして罰点食らったんだろうか。
これほど高度な知識を有していながら
今の中東はなんか学術面ではもう一つだよね
宗教がね、いろいろとね。
この遺跡の時代は今の時代の宗教無かったから。
時代とともに最先端研究はうつりゆくものです。 でも当時は科学の最先端だったんじゃないかな。 今も残る「アル-」はこの辺の言葉を輸入しているハズ。 例えば、アルカリ、アルゴリズム、アルジブラ……などなど、アルキスマホは日本語
アルマゲドンもそうなのかな?
アルキスマホと同じように、あらゆる意味で日本語っぽいよね
この図形、直角三角形じゃなくね?